1、单向加密

单向加密通过对数据进行摘要计算生成密文,密文不可逆推还原。只能加密,不能解密,常用于提取数据的指纹信息以此来验证数据的完整性。但是会引发雪崩效应(雪崩效应就是一种不稳定的平衡状态也是加密算法的一种特征,它指明文或密钥的少量变化会引起密文的很大变化,就像雪崩前,山上看上去很平静,但是只要有一点问题,就会造成一片大崩溃。 可以用在很多场合对于Hash码,雪崩效应是指少量消息位的变化会引起信息摘要的许多位变化。)

算法代表:Base64,MD5,SHA。

2、对称加密

对称加密的加密和解密是使用同一个密钥;加密和解密的速度比较快,效率比较高;但是密钥传输过程不安全,容易破解,而且密钥管理也比较麻烦。

算法代表:DES,3DES,AES,IDEA,RC4,RC5。

对称加密可以分为两类,序列密码分组密码

序列密码

从概念上讲,序列密码(stream cipher)的操作过程与我们想象中加密的过程一致。将1字节的明文输入加密算法,就得到1字节的密文输出。在对端则进行相反的过程。整个过程持续重复,直到所有数据处理完成。因为这种思路比较简单,序列密码绝不能第二次使用相同的密钥。这是因为在实际使用中,攻击者知道或者可以预测特定区域的明文(请思考加密HTTP请求的情景;许多请求的请求方法、协议版本、请求头名称都是一样的)当你知道明文,又观察到密文时,就可以解析一部分密钥序列。如果使用了相同的密钥,那么就可以解密后续的部分密文。为了解这个问题,序列密码都与从长期密钥中提取出来的一次性密钥一同使用。

分组密码

分组密码(block cipher)每次加密一整块数据,并且现代的分组密码倾向于使用128位(16字节)大小的块。一种分组密码就是一个变换函数:接受输入并生成看似杂乱无章的输出。只要使用相同的密钥,每一个可能的输入组合都有少数的输出。

我们可以理解为更高级的对称加密算法。这种加密算法也是非常常见,例如AES加密,有128位、192位和256位的加密强度。在现在的系统对接时,AES加密非常常见。

3、非对称加密

相对对称加密而言,无需拥有同一组密钥,非对称加密是一种“信息公开的密钥交换协议”。非对称加密需要公开密钥和私有密钥两组密钥,公开密钥和私有密钥是配对起来的,也就是说使用公开密钥进行数据加密,只有对应的私有密钥才能解密。这两个密钥是数学相关,用某用户密钥加密后的密文,只能使用该用户的加密密钥才能解密。如果知道了其中一个,并不能计算出另外一个。因此如果公开了一对密钥中的一个,并不会危害到另外一个密钥性质。这里把公开的密钥为公钥,不公开的密钥为私钥。

算法代表:RSA,DSA。

4、加密盐

加密盐也是比较常听到的一个概念,盐就是一个随机字符串用来和我们的加密串拼接后进行加密。加盐主要是为了提供加密字符串的安全性。假如有一个加盐后的加密串,黑客通过一定手段这个加密串,他拿到的明文,并不是我们加密前的字符串,而是加密前的字符串和盐组合的字符串,这样相对来说又增加了字符串的安全性。

5、散列函数

散列函数在密码学中也是不可缺少的一部分。散列函数(hash function)是将任意长度的输入转化为定长输出的算法。谈到散列函数,肯定会想到MD5加密,这种就是一种最为常见的散列函数。散列函数的特点:

  • 抗原像性单向性)给定一个散列,计算上无法找到或者构造出生成它的消息。即不能还原,MD5即是一种单项加密,因此,经常用于密码加密,实现即使管理员也无法知道用户的密码的功能。
  • 抗第二原像性弱抗碰撞性)给定一条消息和它的散列,计算上无法找到一条不同的消息具有相同的散列。
  • 强抗碰撞性 计算上无法找到两条散列相同的消息。

6、数字签名

在通过散列函数来验证消息完整性的时候,仅仅在信息和数据的散列分开传输的时候才可以,否则中间人可以修改数据的同时修改散列,从而避开检测。数字签名主要是验证数据的真伪。微信通过对称加密生成的签名,支付宝通过非对称加密生成签名。效果差别不大。只要足够证明自己的身份即可。